Сколько глаз у мухи

От одного до тридцати

Согласно древним легендам, у людей некогда имелся «третий глаз», отвечающий за сверхчувственное восприятие. Доказательств этому нет, однако та же минога и другие животные, такие как ящерица-гаттерия и некоторые земноводные, имеют необычные светочувствительные органы в «неположенном» месте. И в этом смысле насекомые не отстают от позвоночных: помимо обычных фасеточных глаз у них встречаются небольшие дополнительные глазки – оцелли
, расположенные на лобно-теменной поверхности, и стеммы
– по бокам головы.

Оцелли имеются в основном у хорошо летающих насекомых: взрослых особей (у видов с полным превращением) и личинок (у видов с неполным превращением). Как правило, это три глазка, расположенные в виде треугольника, но иногда срединный либо два боковых могут отсутствовать. По строению оцелли сходны с омматидиями: под светопреломляющей линзой у них находится слой прозрачных клеток (аналог кристаллического конуса) и сетчатка-ретинула.

Стеммы можно обнаружить у личинок насекомых, развивающихся с полным превращением. Их число и расположение варьирует в зависимости от вида: с каждой стороны головы может располагаться от одного до тридцати глазков. У гусениц чаще встречается шесть глазков, расположенных так, что каждый из них имеет обособленное поле зрения.

В разных отрядах насекомых стеммы могут отличаться друг от друга по строению. Эти различия связаны, возможно, с их происхождением от разных морфологических структур. Так, число нейронов в одном глазке может составлять от нескольких единиц до нескольких тысяч. Естественно, это сказывается на восприятии насекомыми окружающего мира: если некоторые из них могут видеть лишь перемещение светлых и темных пятен, то другие способны распознавать размеры, форму и цвет предметов.

Как мы видим, и стеммы, и омматидии представляют собой аналоги одиночных фасеток, пусть и видоизмененные. Однако у насекомых имеются и другие «запасные» варианты. Так, некоторые личинки (особенно из отряда двукрылых) способны распознать свет даже при полностью затененных глазках с помощью фоточувствительных клеток, расположенных на поверхности тела. А некоторые виды бабочек имеют так называемые генитальные фоторецепторы.

Все такие фоторецепторные зоны устроены схожим образом и представляют собой скопление из нескольких нейронов под прозрачной (или полупрозрачной) кутикулой. За счет подобных дополнительных «глаз» личинки двукрылых избегают открытых пространств, а самки бабочек используют их при откладке яиц в затененных местах.

Струнная теория

Как говорит профессор Роджер Харди, глаза мух работают по принципу механической передачи импульсов — они реагируют на свет с помощью горизонтально расположенных крошечных волокон, которые передают сигнал, как струны.

Зрение позвоночных устроено по-другому: в глазу у них имеются длинные трубчатые клетки, обращенные к источнику света, с химическими веществами, которые реагируют на сигнал.

«С точки зрения возможности сформировать сильную реакцию на небольшое количество света механизм членистоногих более чувствителен, к тому же и скорость его реакции выше, чем у стержней и конусов в глазу у позвоночных», — объясняет он.

Профессор Роджер Харди изучает структуру глаза мухи

Есть несколько причин более высокой чувствительности механической системы передачи данных.

Прежде всего «струны» позволяют ускорить нейронные сигналы. Кроме того, у нейронных импульсов существует предел скорости, и благодаря меньшей протяженности нерва от глаза до мозга у членистоногих по сравнению с более крупными позвоночными процесс передачи данных протекает быстрее.

Впрочем, и некоторые позвоночные имеют гораздо более быстрое зрение, чем человек. Похоже, что с быстрым зрением взаимосвязана способность летать. Вероятно, летающим существам небольших размеров необходима быстрая реакция во время полета, чтобы не врезаться в препятствие.

Почему её так сложно поймать

Этого вредителя действительно очень непросто застать врасплох. Причина не только в повышенной реакции насекомого в сравнении с медлительным человеком и способности срываться с места практически мгновенно. Главным образом, столь высокий уровень реакции обусловлен своевременным восприятием мозга этого насекомого изменений и движений в радиусе обзора его глаз.

Зрение мухи позволяет ей видеть практически на 360 градусов. Такой тип зрения называется ещё панорамным. То есть каждый глаз даёт обзор на 180 градусов. Этого вредителя практически нельзя застать врасплох, даже если подходить к ней сзади. Глаза этого насекомого позволяют контролировать всё пространство вокруг неё, тем самым обеспечивая стопроцентную круговую зрительную оборону.

Есть ещё интересная особенность зрительного восприятия мухой палитры цветов. Ведь почти все виды иначе воспринимают те или иные цвета, привычные нашему глазу. Некоторые из них насекомые не различают вообще, другие выглядят для них иначе, в других тонах.

Кстати, помимо двух фасеточный глаз, у мухи имеются ещё три простых глаза. Они расположены в промежутке между фасеточными, на лобной чисти головы. В отличие от сложных глаз, эти три используются насекомым для распознавания того или иного объекта в непосредственной близости.

Камера как глаз у мухи фасеточный глаз

Швейцарские учёные удалось воспроизвести глаз мухи, так называемый искусственный фасеточный глаз.
Фасеточные глаза, состоящие из множества узких светочувствительных конусов, называемых омматидиями, характерны для насекомых и ракообразных.
Такие глаза имеют ряд преимуществ и недостатков по сравнению с человечиским. Глаз мухи имеет меньшее разрешение, чем глаз позвоночных, то есть картинка улавливаемая данным глазом будет не четкая. А из преимуществ — они менее инерционны (некоторые насекомые способны воспринимать мелькания с частотой до 300 Гц ), не требуют фокусировки и могут различать не только цвет, но и направление поляризации света. Если в двух словах – то картинка быстрая, разнообразная, насыщеная но не четкая. Команда учёных из Федеральной политехнической школы Лозанны (EPFL) создала прототип искусственного фасеточного глаза, который использует преимущества такой конструкции.

Камера как глаз у мухи (фасеточный глаз)

Искусственный глаз, который учёные назвали CurvACE (CURVed Artificial Compound Eyes), состоит из 630 «омматидиев», каждый из которых представляет собой светочувствительный элемент и микролинзу, фокусирующую на него узкий пучок света. Глаз имеет угол обзора 60 градусов в вертикальной и 180 — в горизонтальной плоскости. По вертикали углы зрения разных омматидиев заданы формой микролинз, а по горизонтали — изгибом подложки, на которой расположен глаз. Такая форма продиктована технологией изготовления — светочувствительные элементы формируются на твёрдом кристалле, который затем разрезается на узкие полоски.

Камера как глаз у мухи (фасеточный глаз)

Глаз имеет объём всего 2,2 кубических сантиметра и весит 1,75 грамма. При промышленном производстве современный уровень техники позволит уменьшить его размеры как минимум вдвое. Основное назначение глаза — системы визуальной навигации для роботов. Глаз обладает высокой чувствительностью и динамическим диапазоном — каждый омматидий может индивидуально приспосабливаться к уровню освещённости. Такой глаз нельзя ослепить солнечным бликом. В сочетании с высоким быстродействием (прототип может выдавать до 1500 кадров в секунду), малыми размерами, отсутствием искажений по краям поля зрения и возможностью относительно просто добиться кругового или даже сферического обзора это делает его идеальным инструментом для определения положения робота в пространстве, детектирования препятствий и предотвращения столкновений. Наверное первые образцы таких камер мы увидим на автомобилях с автоуправлением и различных роботах.

По своим характеристикам CurvACE приблизительно соответствует глазу плодовой мушки дрозофилы. Так же как и глаз насекомого, содержащий внутри нервный узел, осуществляющий первичную обработку изображения, СurvACE включает в себя микроконтроллер, который обрабатывает сигнал с сенсоров с помощью алгоритмов оптического потока, а так же акселерометр и гироскоп.

Собственно электронная начинка и составляет большую часть массы и объема глаза — сам массив CMOS-сенсоров с микролинзами имеет толщину 1 мм и весит 0,36 грамма. Возможность придавать фасеточной камере любую форму и отсутствие больших линз открывают множество возможностей: такие «глаза» можно встраивать в стены помещений, в одежду или мебель для использования в системах умного дома или видеонаблюдения. Комбинируя омматидии разного типа в одном сенсоре, можно создать камеру, которая будет видеть одновременно в разных диапазонах. Некий праобраз всевидещего глаза, новая беда для параноиков и чудо находка для спецслужб.

Количество глаз

Как уже говорилось, 2 больших фасеточных глаза расположены по бокам головы мух. У самок расположение органов зрения несколько расширено (разделено широким лбом), у самцов же глаза находятся немного ближе друг к другу.

Но на средней линии лба, за сложными фасеточными глазами, находятся еще 3 обычных (не фасеточных) глаза для дополнительного видения. Чаще всего они включаются в работу, когда надо рассмотреть предмет вблизи, т. к. сложный глаз с идеальным зрением в этом случае не так необходим. Получается, что всего у мух 5 глаз.

Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза

. Число зрительных элементов — омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе
каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе
омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза)
– это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза
– имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.

Сложными, или фасеточными, глазами

Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.

Органы зрения развиты у большинства насекомых. Наибольшего развития достигают сложные, или фасеточные, глаза

. Число зрительных элементов — омматидиев, или фасеток, в глазу комнатной мухи достигает 4 тыс., а у стрекоз даже 28 тыс. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волокнами с зрительными долями мозга. Каждый омматидий окружают пигментные клетки.

В зависимости от восприятия света различной интенсивности различают аппозиционный и суперпозиционный типы глаз. Первая разновидность строения глаз характерна дневным насекомым, вторая – ночным.

В аппозиционном глазе
каждый омматидий изолирован в своей верхней части при помощи пигмента от соседних омматидиев. Таким образом, каждая структурная единица глаза работает отдельно от всех остальных, воспринимая только «свою» часть внешнего пространства. Общая картинка складывается в мозге насекомого как бы из множества кусочков мозаики.

В суперпозиционном глазе
омматидии лишь частично, хоть и по всей длине, защищены от боковых лучей: они полупроницаемы. С одной стороны, это мешает насекомым при интенсивном освещении, с другой – помогает им лучше видеть в сумерках.

Глазки́ (дорсальные простые глаза)
– это мелкие органы зрения, которые имеются у некоторых имаго и располагаются обычно на верхней части головы. Обычно представлены в количестве трех, при этом, один лежит чуть впереди, а еще два – сзади и сбоку от переднего. В их составе нет омматидия, строение простых глазков значительно упрощено. Снаружи располагается роговица, состоящая из корнеагенных клеток, глубже находится световоспринимающий аппарат из ретинальных (чувствительных) клеток, еще ниже лежат пигментные клетки, которые переходят в волокна зрительного нерва.

Из всех разновидностей глаз насекомых простые глазки обладают наиболее слабой способностью к зрению. По некоторым данным, они вообще не выполняют зрительной функции, и лишь отвечают за улучшение функции сложных глаз. Это, в частности, доказывается тем, что у насекомых практически не бывает простых глазков в отсутствии сложных. Кроме того, при закрашивании фасеточных глаз насекомые перестают ориентироваться в пространстве, даже если у них имеются хорошо выраженные простые глазки.

Стеммы, или латеральные простые глаза
– имеются у личинок насекомых с полным превращением. Во время стадии куколки они «превращаются» в сложные глаза. Выполняют зрительную функцию, но, в связи с упрощенной структурой, видят относительно слабо. Для улучшения зрения личиночные глазки нередко представлены у личинок в количестве нескольких штук. У личинок пилильщиков они сходны с дорсальными, а у гусениц бабочек напоминают омматидий сложного глаза. Гусеницы воспринимают форму предметов, различают мелкие детали на их поверхности.

Сложными, или фасеточными, глазами

Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.

Мы ограниченны нашими собственными представлениями. Восприятие реальности происходит за счет функции различных органов, и лишь не многие понимают, что это довольно-таки ограниченное видение. Может быть мы видим очень тусклую версию истинной реальности, из-за того что органы чувств несовершенны. На самом деле мы не можем видеть мир, глазами других форм жизни. Но благодаря науке мы можем приблизиться к этому. Изучая, можно выявить, как построены глаза других животных и как они функционируют. Например, сравнивая с нашим зрением, выявляя число колбочек и палочек или формы их глаз или зрачков. И это, хоть как то приблизит к тому миру, не опознанному нами.

Тайны насекомых сколько глаз у обыкновенной мухи

Вопрос «Сколько глаз у обыкновенной мухи?» не так прост, как кажется. Два больших глаза, расположенных по бокам головы, можно увидеть невооруженным взглядом. Но на деле устройство органов зрения мухи гораздо сложнее.

Если посмотреть на увеличенное изображение глаз мухи, видно, что они похожи на соты и состоят из множества отдельных сегментов. Каждая из частей имеет форму шестиугольника с правильными гранями.

Отсюда и произошло название такого строения глаза – фасеточное («facette» в переводе с французского означает «грань»).

Ячейки, которые мы видим, называются омматидиями. Омматидии имеют конусообразную форму, узкий конец которой уходит вглубь глаза.

Конус состоит из клетки, которая воспринимает свет, и хрусталика, защищенного прозрачной роговицей. Все омматидии тесно прижаты друг к другу и соединены роговицей.

Каждый из них видит «свой» фрагмент картинки, а мозг складывает эти крошечные изображения в одно целое.

Итого у мухи одна пара сложных глаз и три простых — всего пять. Зачем природа пошла по такому сложному пути? Дело в том, что фасеточное зрение сформировалось, чтобы в первую очередь охватывать взглядом как можно больше пространства и улавливать движение.

Такие глаза выполняют основные функции. Простыми глазами муху «обеспечили» для измерения уровня освещённости. Фасеточные глаза являются основным органом зрения, а простые – второстепенным.

Если бы у мухи не было простых глаз, она была бы более медленной и могла летать только при ярком свете, а без фасеточных глаз она ослепла бы.

Каким муха видит окружающий мир?

Большие глаза выпуклой формы позволяют мухе видеть все вокруг себя, то есть угол зрения равен 360 градусам. Это в два раза шире, чем у человека. Неподвижные глаза насекомого одновременно смотрят по всем четырём сторонам. Зато острота зрения мухи ниже человеческой почти в 100 раз!

Так как каждый омматидий является самостоятельной ячейкой, картинка получается сетчатой, состоящей из тысяч отдельных маленьких изображений, дополняющих друг друга. Поэтому мир для мухи – это собранный пазл, состоящий из нескольких тысяч кусочков, причем довольно расплывчатый. Более или менее четко насекомое видит всего на расстоянии 40 — 70 сантиметров.

Муха способна различать цвета и даже невидимый человеческому глазу поляризованный свет и ультрафиолет. Глаз мухи чувствует малейшие изменения яркости света. Она способна видеть солнце, скрытое густыми облаками. Но в темноте мухи видят плохо и ведут преимущественно дневной образ жизни.

Эта способность жизненно необходима для определения расстояния до источника опасности и достигается за счет «передачи» изображения от одной ячейки — омматидия к другой.

Авиационные инженеры взяли на вооружение такую особенность зрения мухи и разработали прибор для вычисления скорости летящего самолета, повторив строение ее глаза.

Благодаря такому быстрому восприятию, мухи живут в замедленной реальности, по сравнению с нами. Движение, длящееся секунду, с точки зрения человека, муха воспринимает как десятисекундное действие.

Наверняка люди кажутся им очень медлительными существами. Мозг насекомого работает с быстротой суперкомпьютера, получая изображение, анализируя его и передавая соответствующие команды телу за тысячные доли секунды.

Поэтому прихлопнуть муху получается далеко не всегда.

Заключение

Вот мы и проанализировали, как выглядит мир глазами мухи. Теперь мы знаем, что эти вездесущие вредители обладают, как и все насекомые, удивительным зрительным аппаратом, позволяющим им не терять бдительности, и в светлое время суток держать круговую наблюдательную оборону на все сто.

Зрение обыкновенной мухи напоминает сложную систему слежения, включающую в себя тысячи мини-камер наблюдения, каждая из которых предоставляет насекомому своевременную информацию о том, что происходит в ближайшем диапазоне.

Глаз насекомого при большом увеличении похож на мелкую решетку.

Это потому, что глаз насекомого состоит из множества маленьких «глазков»-фасеток. Глаза насекомых называют фасеточными
. Крошечный глазок-фасетка называется омматидий
. Омматидий имеет вид длинного узкого конуса, основание которого — линза, имеющая вид шестигранника. Отсюда и название фасеточного глаза: facette
в переводе с французского означает «грань»
.

Пучок омматидиев составляет сложный, круглый, глаз насекомого.

Каждый омматидий имеет очень ограниченное поле зрения: угол обзора омматидиев в центральной части глаза — всего около 1°, а по краям глаза — до 3°. Омматидий «видит» только тот крошечный участок находящегося перед глазами предмета, на который он «нацелен», то есть куда направлено продолжение его оси. Но так как омматидии тесно прилегают друг к другу, а их оси в круглом глазу расходятся лучеобразно, то весь сложный глаз охватывает предмет в целом. Причём изображение предмета получается в нем мозаичным, то есть составленным из отдельных кусочков.

Число омматидиев в глазу у разных насекомых различно. У рабочего муравья в глазу всего около 100 омматидиев, у комнатной мухи — около 4000, у рабочей пчелы — 5000, у бабочек — до 17 000, а у стрекоз — до 30 000! Таким образом, у муравья зрение весьма посредственное, тогда как огромные глаза стрекозы — два радужных полушария — обеспечивают максимальное поле зрения.

Из-за того, что оптические оси омматидиев расходятся под углами 1-6°, четкость изображения насекомых не очень высока: мелких деталей они не различают. Кроме того, большинство насекомых близоруки: видят окружающие предметы на расстоянии лишь нескольких метров. Зато фасеточные глаза отлично умеют различать мелькания (мигания) света с частотой до 250–300 герц (для человека предельная частота около 50 герц). Глаза насекомых способны определять интенсивность светового потока (яркость), а кроме того, они обладают уникальной способностью: умеют определять плоскость поляризации света. Эта способность помогает им ориентироваться, когда солнца не видно на небосклоне .

Насекомые различают цвета, но совсем не так, как мы. Например, пчелы «не знают» красного цвета и не отличают его от чёрного, но зато воспринимают невидимые для нас ультрафиолетовые лучи, которые расположены на противоположном конце спектра . Ультрафиолет различают также некоторые бабочки, муравьи и другие насекомые. Кстати, именно слепостью насекомых-опылителей нашей полосы к красному цвету объясняется любопытный факт, что среди нашей дикорастущей флоры нет растений с алыми цветками.

Свет, идущий от солнца, не поляризован, то есть его фотоны имеют произвольную ориентацию. Однако, проходя через атмосферу, свет поляризуется в результате рассеивания молекулами воздуха, и при этом плоскость его поляризации всегда направлена на солнце

Кстати…

Кроме фасеточных глаз у насекомых есть еще три простых глазка диаметром 0,03-0,5 мм, которые располагаются в виде треугольника на лобно-теменной поверхности головы. Эти глазки не приспособлены для различения объектов и нужны для совсем другой цели. Они измеряют усредненный уровень освещенности, который при обработке зрительных сигналов используется в качестве точки отсчета («ноль-сигнала»). Если заклеить насекомому эти глазки, оно сохраняет способность к пространственной ориентации, но летать сможет только при более ярком свете, чем обычно. Причина этого в том, что заклеенные глазки принимают за «средний уровень» черное поле и тем самым задают фасеточным глазам более широкий диапазон освещенности, а это, соответственно, снижает их чувствительность.

Добавить комментарий