Сколько кадров в секунду видит человеческий глаз

Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино

В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма. Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени.

Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов.

В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации.

Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — (для обработки графики) и процессор (для расчётов).

Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока. Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты. Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены.

По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к.с до 45к.с. Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия.

Исследования

Так как эта тема интересна для многих людей, то количество проводимых опытов тоже велико. Ведь все хотят узнать о возможностях своего зрения. Одним из самых необычных и удивительных экспериментов можно по праву считать следующий:

Когда группа испытуемых просматривала высокочастотное видео, то заметила лишний предмет на экране.

  • Ученые создавали группы людей.
  • Предоставляли им видеоматериал, в котором присутствовали еле видимые дефектные кадры с изображением чего-то лишнего. Обычно это был летящий объект.
  • После просмотра значительная часть говорила о том, что заметила мелькание в видео.
  • Это поразило всех, так как фпс было на уровне 220.

При создании шлемов виртуальной реальности разработчики столкнулись с проблемой. Выяснилось, что периферийное не различает детали, но имеет большую скорость. Поэтому нужно было менять значение в 30 и 60 герц, которые подходят для мониторов. После нескольких попыток выяснилось: для комфортного нахождения в шлеме это значение должно доходить до 90 Гц.

24 кадра

Большинство фильмов, часть видеоматериалов сняты с частотой 24 к.с.
Значение является классическим стандартом в кинематографии
, но из этого не следует, что оно используется повсеместно.

Для создания движения будет вполне достаточно 12 кадров
, но это значение не использовалось, так оно было минимальным для достижения эффекта. При использовании меньшего числа к.c., изображение переставало восприниматься плавным, что вело к исчезновению эффекта. Было решено остановиться на 16 кадрах
, которые предоставляли требуемый результат. В дальнейшем 16 к. с. были признаны стандартом для немого кинопроизводства.

Необходимость в использовании большего кадров, возникла с приходом озвучки. При записи в прежнем формате были несоответствия между аудио и видео дорожками. Из-за недостаточного количества кадров, озвучка становились искаженной и несинхронной, что приводило к исчезновению целостного восприятия. Дополнительные 8 к.с придали больше плавности и помогли решить проблему. Использование большего количества кадров, требовало большего расходов пленки, которая в то время стоило не дешево. 24 кадра являются минимальным значением для плавности и используются по сегодняшний день, являясь общепринятым стандартом киносъемки и проекции. Время идет и вместе с ним прогресс, актуальность стандарта угасает. Последние годы, все чаще говорят о переходе на новые технологии.

Так сколько человеческий глаз видит кадров в секунду

Зрение не похоже на дискретную систему, его нельзя описать цифрами. Если, например, про камеру можно сказать, с каким разрешением и частотой кадров она снимает, то с какими параметрами считывает изображение глаз, сказать невозможно. Зрение воспринимает картинку целиком, если она меняется, изменения тут же фиксируются.

Но вот понять, какие кадры действительно сменяют друг друга, можно только при просматривании кинопленки, извлеченной из проектора. Конкретной величины, которая указывала бы на максимальное количество кадров, воспринимающихся глазом человека при просмотре видео, учеными не представлено.

Однако на практике доказано следующее: комфорт восприятия видео с разным количеством кадров в секунду зависит от особенностей наблюдаемого объекта. Чем быстрее и резче происходит движение на экране, тем выше должна быть предельная частота кадров.

Таким образом, для видео с медленно плывущей по реке лодкой достаточно и 24 кадров, а для напряженного футбольного матча лучше выбрать 60 кадров. Если вы смотрите видео с лодкой, вы не заметите различий между частотами 24 и 60 кадров. Но если на экране люди, которые быстро бегают, часто меняют направление движения, бьют по мячу, летящему затем на большое расстояние, разница будет заметна с первого взгляда.

Так при 24 кадрах летящий в ворота мяч не будет заметен, он «размоется». А вот при 60 кадрах вы точно увидите, как он влетает в ворота или как его поймал вратарь.

Проверить сказанное очень просто – запустите на компьютере игру с хорошей графикой. Только сначала поиграйте на минимальных настройках, а потом перейдите на максимальные. На низких настройках FPS высокий, поэтому хотя изображение и не такое детальное и четкое, движения персонажей более плавные. При игре на максимуме наоборот – FPS низкий, а красивые реалистичные персонажи двигаются уже не так изящно.

Ответ на вопрос, сколько человеческий глаз видит кадров в секунду, такой – сколько угодно. Но бывает так, что при просмотре человек испытывает дискомфорт или не может распознать объекты. Этот предел часто зависит от особенностей зрения конкретного человека. Если говорить о тех же видео-играх легкое размытие в глазах может наблюдаться при 150 кадрах в секунду.

Оговоримся, что так может быть при наличии каких-либо офтальмологических заболеваний. Здоровый глаз воспримет такую частоту без проблем. Свое значение имеет резкость переходов между контрастными цветами, амплитуда смены кадров и другие параметры.

Например, если подобрать несколько цветных картинок, не связанных между собой, и сделать из них видео, как из кадров, даже самый здоровый глаз устанет уже после пары секунд просмотра и ничего не распознает. Причина очень проста – зрение будет изо всех сил пытаться зафиксировать все смены изображения, эффект единого целого пропадет.

К усталости глаз может добавиться головная боль, головокружение, у пациентов с эпилепсией начинаются припадки. То же касается и просмотра динамичных сцен их кино и игр, где кадры хоть и связаны друг с другом, но цвета и изображения мелькают слишком быстро.

Сегодня самыми комфортными для зрения считаются камеры, экраны и проекторы с частотой кадров 1000 в секунду. Они дают настолько плавную и четкую динамическую картинку, что ее очень сложно отличить от реальности.

Интересный факт Фильм «Хоббит» вызвал некоторую долю отторжения у публики. Критики заявили, что 48 кадров в секунду (именно при такой частоте показывали фильм) – необычно и непривычно для зрителя. Фильм выглядит слишком реалистично, нет привычной размытости движений, темных углов и прочих хорошо знакомых деталей. «Хоббит» был сравнен с телевидением в высоком разрешении. Несмотря на долю негатива, фильм вошел в список самых красивых работ за всю историю кинематографа.

Теперь понятно, что то сколько человеческий глаз видит кадров в секунду, точно неизвестно, но это не мешается нам наслаждаться кино, видеоиграми и телепередачами каждый день.

Сколько кадров в секунду видит человек. Строение глаза и интересные факты

Строение

Поверхность Земли изгибается и пропадает из поля видимости на расстоянии 5 километров. Но острота нашего зрения позволяет видеть далеко за горизонт. Если бы Земля была плоской, или если б вы стояли на верху горы и смотрели на гораздо больший участок планеты, чем обычно, вы смогли бы увидеть яркие огни на расстоянии сотен километров. В темную ночь вам удалось бы даже увидеть пламя свечи, находящейся в 48 километрах от вас.

Самым далеким объектом, видимым невооруженным глазом, является Туманность Андромеды, расположенная на громадном расстоянии в 2,6 миллионов световых лет от Земли.

Один триллион звезд этой галактики испускает в общей сложности достаточно света для того, чтоб несколько тысяч фотонов каждую секунду сталкивались с каждым квадратным сантиметром земной поверхности. В темную ночь этого количества достаточно для активизации сетчатки глаза.

В 1941 году специалист по вопросам зрения Селиг Гехт со своими коллегами из Колумбийского университета сделал то, что до сих пор считается надежным средством измерения абсолютного порога зрения – минимального количества фотонов, которые должны попасть в сетчатку, чтобы вызвать осознание визуального восприятия.

Эксперимент устанавливал порог в идеальных условиях: глазам участников давали время, чтобы полностью привыкнуть к абсолютной темноте, сине-зеленая вспышка света, действующая как раздражитель, имела длину волны 510 нанометров (к которой глаза наиболее чувствительны), и свет был направлен на периферический край сетчатки, заполненный распознающими свет клетками палочками.

По данным ученых, для того, чтоб участники эксперимента смогли распознать такую вспышку света более чем в половине случаев, в глазные яблоки должно было попасть от 54 до 148 фотонов. На основании измерений ретинальной абсорбции ученые подсчитали, что в среднем 10 фотонов в действительности впитываются палочками сетчатки человека. Таким образом, абсорбция 5-14 фотонов или, соответственно, активация 5-14 палочек указывает мозгу, что вы что-то видите.

Объекты величиной с человека различимы как протяженные на расстоянии лишь около 3 километров. В сравнении на таком расстоянии мы смогли бы четко различить две фары автомобиля.

Но на каком расстоянии мы можем распознать, что объект представляет собой нечто большее, чем просто мерцание света? Чтобы объект казался пространственно протяженным, а не точечным, свет от него должен активировать не менее двух смежных колбочек сетчатки – клеток, отвечающих за цветное зрение. В идеальных условиях объект должен лежать под углом не менее 1 аркминута, или одна шестая градуса, чтобы возбудить смежные колбочки.

Эта угловая мера остается одной и той же вне зависимости от того, близко или далеко находится объект (удаленный объект должен быть гораздо больше, чтобы находиться под тем же углом, что и ближний). Полная Луна лежит под углом 30 аркминут, тогда как Венера едва различима как протяженный объект под углом около 1 акрминуты.

FPS и человеческий глаз сколько fps воспринимает глаз

На эту тему сломано множество копий на просторах интернета. Главным образом по тому, что людям хочется знать предел FPS, который имеет смысл устанавливать в играх, т.к. это дает возможность оценивать практическую целесообразность покупки более мощных видеокарт.

Попытаемся разобраться.

Инертность, как аналог FPS для человеческого глаза

Аналогом FPS является инертность
палочек и колбочек — фоторецепторы светочувствительных клеток сетчатки глаза.

Инертность — это время необходимое рецептору для того, что бы воспринять новую информацию.

И тут начинаются первые проблемы.

  • во-первых палочки и колбочки по-разному воспринимают движение и цвет. Палочки в 100 раз менее чувствительны к цветам, но имеют значительно меньшую инертность. Т.е. их FPS больше. Но они практически не способны различать цвета;
  • во-вторых эти фоторецепторы размещаются на сетчатки НЕ
    равномерно. Колбочки (которые имеют низкий FPS но хорошо распознают цвета) расположены в центре в перемешку с колбочками. По бокам сетчатки находятся только палочки.

Идея матушки природы проста — по бокам расположено то, что максимально чувствительно к движению. Задача этих рецептором просто сигнализировать о том, что «что-то движется вон в тех кустах сбоку». Затем человек может повернуть голову и рассмотреть это «что-то» уже более чувствительными рецепторами — ба-а! да это же большая полосатая голодная тигра! =)

Очевидно, что человек, работающий на компьютере использует по большей части центр сетчатки.

По этому в данном случае целесообразно говорить исключительно о среднем FPS именно смеси палочек и колбочек.

На одном сайте мне удалось найти результаты исследований на эту тему.

Минимальная инертность составила 20 мс.

Иначе говоря мы получаем FPS
50 кадров в секунду.

Означает ли это, что FPS выше этого значения никак не будет ощущаться глазом?

FPS глаза и ощущение реалистичности

Зрительная система человека не ограничивается глазом. Глаз это лишь «сенсор», информация из которого воспринимается не напрямую, а проходит сложный и до конца не изученный процесс постобработки. Этим объясняется существование оптических иллюзий.

Для примера взгляните на эту картинку.

Очевидно, что здесь всего 1 кадр, однако мозг воспринимает сигналы получаемые от палочек (с переферии зрения) и тарктует их как признаки движения, это позволяте ему самому «дорисовывать» кадры и делать плавное движение всего из 1 кадра.

Эффект размытия и FPS

Человеческий глаз
способен воспринимать наибольшее FPS на переферии зрения. Современные мониторы еще не достигли таких размеров, что бы покрывать все поле зрения человека. И это накладывает определенные ограничения на степень реалистичности картинки. Разработчики видеоигр понимают это и поэтому придумали добавлять по краям экрана эффект размытия, этот эффект позволяет мозгу воспринимать происходящее на экране более реалистично. В то же время размытие снижает требование к FPS на краях экрана, т.к. мозг фиксирует УЖЕ ИСКУСТВЕННО размытое изображение. Соответственно для обеспечения нужного уровня реалистичности хватает меньшего FPS.

Выводы

Принимая во внимание чрезвучайную сложность постобработки синалов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно. Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS

Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS.

В тоже время учитывать, что края монитора захватываются частью переферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему.

В итоге рациональным является остановиться на 60 FPS взяв 10 FPS прозапас для просмотра видеоряда в котором нет эффекта размытия по краям.

Возможности зрения и то, сколько кадров в секунду видит человек, до сих пор не полностью изучены. В этой области активно проводят исследования. Существуют споры на тему того, какая частота является оптимальной. В кинематографии используют 24 кадра в секунду, а 25 считают негативно действующим на психику.

Блоги Сколько кадров в секунду воспринимает человеческий мозг

Редактор PC Gamer Алекс Уилтшир (Alex Wiltshire) поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым.

Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. https://www.youtube.com/embed/HaBYpqcJqiE

Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» (мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью).

Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки.

Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа.

Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки.

Как отмечает исследователь Эдриен Чопин (Adrien Chopin), скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально.

Игры — едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга

Эдриен Чопин, исследователь когнитивных функций мозга

Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей.

В то же время некоторые пилоты истребителей во время тестов могли видеть изображения, которые появлялись на дисплее на 1/250 долю секунды.

Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение.

Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду (задержка в 2 миллисекунды).

Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая.

Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения.

По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали.

Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора.

Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь, однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной.

Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию от картинке при частоте выше 20 Гц. По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше.

Эдриен Чопин, исследователь

Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино. Тем не менее он понимает, что люди видят разницу между 20 и 60 герцами.

Если вы видите разницу, это не значит, что вы станете лучше играть. После 24 Гц ничего уже не будет существенно меняться, хотя у вас и может возникнуть обратное чувство.

В чём учёные сошлись, так это в том, что высокая частота кадров несёт по большей эстетический смысл, чем практический, и они не считают, что игры стоит развивать в этом направлении.

Строение

Человеческий глаз воспринимает визуальную информацию с помощью колбочек и палочек, из которых состоит сетчатка. Эти колбочки и палочки по-разному воспринимают видеоряд, но имеют способность к совмещению разрозненной информации в единую картинку. Палочки не улавливают цветовых отличий, но способны уловить смену изображений. Колбочки же, наоборот, прекрасно различают цвета. В целом сочетание колбочек и палочек представляет собой фоторецепторы человеческого глаза, отвечающие за то, чтобы просматриваемое изображение выглядело целостно.

Сколько кадров в секунду видит человек? Это частый вопрос. На сетчатке глаз фоторецепторы располагаются относительно неравномерно, в центре их примерно одинаковое количество, а вот ближе к краю сетчатки палочки составляют большинство. Именно такое строение глаза имеет очень логичное объяснение с точки зрения природы. В те времена, когда человек охотился на мамонта, его боковое зрение должно было быть приспособлено для улавливания малейшего движения с правой или левой стороны. Иначе, пропустив все на свете, он рисковал остаться голодным, а то и мертвым, поэтому такое строение глаза является самым естественным. Таким образом, устройство человеческого глаза таково, что он видит не отдельные кадры, как в раскадровке для мультфильма, а совокупность картинок в целом.

Научное обоснование

Ученые доказали, что при 24-кратной частоте кадров человек воспринимает не только общую картинку на мониторе, но на подсознательном уровне отдельные кадры. Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека. Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более. Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо. В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения

А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду

Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.

Неожиданные факты

Не все знают о таком интересном факте: эксперименты с показом видеоизображения с разной частотой начались более ста лет назад в эпоху немого кино. Для демонстрации первых фильмов кинопроекторы снабжались ручным регулятором скорости. То есть фильм показывали с той скоростью, с которой крутил ручку механик, а он, в свою очередь, ориентировался на реакцию зала. Изначальная скорость показа немого фильма составляла 16 кадров в секунду.

Но при просмотре комедии, когда публика проявляла высокую активность, скорость увеличивали до 30 кадров в секунду. Но такая возможность самовольно регулировать скорость показа могла иметь и отрицательные последствия. Когда владелец кинотеатра хотел заработать больше, он, соответственно, сокращал время показа одного сеанса, но увеличивал количество самих сеансов. Это приводило к тому, что кинопродукция не воспринималась человеческим глазом, а зритель оставался недовольным. В результате во многих странах на законодательном уровне запретили демонстрацию фильмов с ускоренной частотой и определили норму, в соответствии с которой работали киномеханики. Вообще, для чего изучаются fps и человеческий глаз? Поговорим об этом.

Какое количество кадров выбрать

Выбор количества кадров
зависит от творческого видения и эффекта, который Вы хотите получить. Меньшая скорость делает так, что мозг подсознательно признает, что наблюдаемое изображение является «фальшивкой», поэтому выбор 24 кадров в секунду может отлично подчеркнуть концепцию на основе воображения, например, в сказках и других нереальных фильмах.

Чем выше количество кадров, тем более реалистично выглядят сцены, поэтому такая скорость идеально подходит для современных художественных, документальных или фильмов в стиле экшен. Хотя 60 кадров в секунду является лучшим технически решением для достижения плавности, но покадровые анимационные ролики отлично выглядят и при 12 кадрах в секунду, а увидеть мяч во время матча, записанного с частотой 24 кадра в секунду – это уже практически невозможно.

Часто разработчики пытаются придерживаться частоты кадров традиционно используемой в их регионе, т.е. 29,97 кадра в секунду в США и Японии и 25 кадров в секунду в Европе и большинстве стран Азии. Постарайтесь, чтобы ваш выбор был продуман.

Помните, что человеческий глаз является сложным устройством и не распознает отдельных кадров, поэтому эти рекомендации не следует рассматривать в качестве доказанных научно фактов, а, скорее, как результат многолетних наблюдений разных людей.

Ниже вы найдете информацию об общих цифрах кадров, используемых в фильмах и клипах:

  • 12 кадров в секунду
    : абсолютный минимум, необходимый для появления движения. Меньшие скорости будут восприниматься как набор отдельных изображений.
  • 24 кадра в секунду
    : минимальное значение, при котором движение выглядит достаточно плавно. Это неплохой вариант, который подойдет для создания атмосферы старого фильма.
  • 25 кадров в секунду
    : ТВ-стандарт в ЕС и большинстве стран Азии.
  • 30 кадров в секунду (точнее 29,97)
    : стандарт, применяемый в США и Японии.
  • 48 кадров в секунду
    : значение в два раза выше, чем в традиционных фильмах.
  • 60 кадров в секунду
    : в настоящее время наиболее передовая скорость записи. Большинство людей не видит особой разницы в плавности движений при съемке выше 60 кадров в секунду. Это количество кадров, отлично подходит для отображения динамичного экшена.

Анимация с частотой 12 кадров в секунду

Высокая частота кадров может быть также полезна во время затемнения и осветления изображений, когда при более низких значениях может произойти потеря качества изображения.

Конечно, вы не должны использовать одну фиксированную частоту кадров во всем фильме. Например, вы можете выбрать 24 кадра в секунду, чтобы получить романтический эффект, а потом перейти на 60 кадров в секунду, когда это потребуется:

  • Взрывы
    : взрывы в кино, снятые с частотой 24 кадра в секунду, выглядят либо четкими, но прерывистыми, либо размытыми, но плавными. При большем числе кадров в секунду можно отобразить очень быстрые взрывы детально, с высокой плавностью и четкостью..
  • Жидкости
    : при высокой частоте кадров Вы получаете возможность расширенных настроек диафрагмы при съемке быстро движущихся жидкостей.
  • Динамические сцены
    : например, бокс, борьба и т.д.
  • Выстрелы и другие быстро движущиеся объекты
    : размытие движения при более низких частотах кадров делают невозможным отслеживание быстро движущихся объектов. В сценах, снятых с большим количеством кадров в секунду эта проблема не возникает.

Вам не придется выбирать между размытие и низкой детализацией

В сценах с быстрым действием и большим количеством мелких, движущихся объектов, как в этом клипе Nintendo , частота в 60 кадров в секунду
позволяет зафиксировать все мельчайшие детали, сохраняя при этом необычайную плавность изображения.

Добавить комментарий